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The truncated Burgers models have a unique equilibrium state which is defined 
continuously for all the Reynolds numbers and attainable from a realizable class 
of initial disturbances. Hence, they represent a sequence of convergent approxi- 
mations to the original (untruncated) Burgers problem. We have pointed out that 
consideration of certain degenerate equilibrium states can lead to the successive 
turbulence-turbulence transitions and finite-jump transitions that were sug- 
gested by Case & Chiu. As a prototype of the Navier-Stokes equations, Burgers 
model can simulate the initial-value type of numerical integration of the Fourier 
amplitude equations for a turbulent channel flow. Thus, the Burgers model 
dynamics display certain idiosyncrasies of the actual channel flow problem 
described by a truncated set of Fourier amplitude equations, which includes only 
a modest number of modes due to the limited capability of the computer at hand. 

1. Introduction and summary 
Recently, Case & Chiu (1969) have investigated the stability of several of the 

lowest-order truncated Burgers (1937,1948) models for a turbulent channel flow, 
which were obtained by discarding all the disturbance modes of order higher than 
a certain preassigned one. Following their terminology, let us denote the laminar 
solution by L and the tubulent solutions by T(m), where rn is the number of nodes 
within the channel width. Here, for the lack of appropriate name, we shall loosely 
call all solutions of the Burgers model other than the L, turbulent solutions. The 
naturally expected stability result is the existence of the well-known laminar 
transition of L-+ T(,,l which occurs a t  a certain critical Reynolds number, R,, for 
all the truncated models. This laminar-turbulence (GT) transition takes place 
not only continuously but reversibly with respect to the Reynolds number, R. 
What is not anticipated, however, from the usual stability analysis is the sur- 
prising result that the truncated Burgers models can further induce a series of 
the turbulence-turbulence (T-T) transitions; i.e. T(o)-+ T’(l) at the second B,, 
T(d+ T(& a t  the third R,, and so on. Furthermore, a thought-provoking conclusion 
of their perturbation analysis is the possibility of a so-called finite-jump transi- 
tion, whereby certain T-T transitions involve a discontinuous change in the 
turbulent solutions. If their stability conclusions were true, then the equilibrium 
turbulent solutions of a truncated model will not in general be continuous with 
respect to R. Further, as the truncation order is increased, the equilibrium solu- 
tion of the corresponding Burgers model will involve increasingly many different 
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T(,, which are adjointed discontinuously at some R,. Hence, there is no hope for 
approximating the original (untruncated) Burgers problem by the truncated 
models in any convergent fashion. 

Our general stability conclusion is this: the truncated Burgers models have 
only the L-T transition of L-+ T(,,) a t  the critical R, = 7~ and hence the T-T 
transitions of the kind that Case & Chiu have proposed are not realizable in 
actuality. In  the range R < R,, the laminar solution L is asymptotically stable 
and the region of asymptotic stability includes the entire phase-space by the 
Zubov (1964) theorem. Hence, L is attainable from any initial data. In  the 
turbulent range R > R,, however, the truncated Burgers models have a unique 
equilibrium state defined continuously for all R. This equilibrium state is not. 
only stable in the sense of Lyapunov (see Hahn 1963), but also attainable by 
directly integrating the model equations from a set of class A initial data. Here, 
we bisect the initial data space by including first in class A only the points whose 
primary mode has an amplitude larger than that of any other mode and in 
class B all those not in class A. It has been found that the truncated Burgers 
models have a convergent sequence of turbulent equilibrium states which are 
attainable from the class A initial data. On the other hand, the truncated Burgers 
models under the class B initial data lead to degenerate equilibrium states which 
show no convergence property with respect to the truncation approximation. 
It must be pointed out that the separation of the initial data space is empirical 
and based solely on the convergence of truncated Burgers models. It however 
reflects a quirk of the Burgers model in that for the Navier-Stokes equations the 
class B initial data are just as meaningful as the class A. In  addition, the trun- 
cated Burgers models have another kind of degenerate equilibrium state which 
cannot be attained from any initial data, perhaps, except from the equilibrium 
state itself. The most peculiar feature of the Burgers model is that the number of 
nodes for T(m) is not determined uniquely by the problem, although its maximum 
number is dictated by the Reynolds number. It is this arbitrariness in m that has 
led Case & Chiu (1969) to suggest the successive T-T transitions. Since m is an 
external parameter, the truncated Burgers models do not in actuality induce 
a series of T-T transitions as we increase R steadily. It will be shown in $3.1  
that the T-T and finite-jump transitions have been predicted in an attempt to 
match up certain equilibrium states of degenerate kind. 

Although the stability analysis of truncated Burgers models is important in 
its own right, the ultimate purpose of this paper is to simulate the initial-value 
type of numerical integration of the Navier-Stokes equations for a turbulent 
channel flow. Let us consider a steady channel flow between two parallel infinite 
plates under a large external pressure gradient. If the flow field is Fourier analyzed 
in the longitudinal plane of homogeneity and if the flow variables are discretized 
along the channel width, then the Navier-Stokes equations have a representation 
of Fourier amplitude equations which are an infinite set of ordinary differential 
equations. Due to the inherent complexity and strong coupling among the 
Fourier modes, it  is not possible to carry out numerical integration of the Fourier 
amplitude equations for both a large number of modes and a long time-period 
using the computer a t  present available to the author. Since the Burgers model 
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shares the same basic non-linear structure with the Navier-Stokes equations, it 
is hoped that certain behaviours of the Fourier amplitude equations for a channel 
flow can be explained from the Burgers model which can readily be investigated 
in depth. First of all, it is not only justified but advantageous to use the so-called 
quasi-steady formulation ($0 3.2 and 4) in which the initial-value type of integra- 
tion has a physical analogue of following the growth of an initial disturbance 
introduced into the otherwise quasi-steady laminar flow. Secondly, due to  the 
limited storage of a computer, we are forced to truncate the Fourier amplitude 
equations at a rather low level. As exhibited by the Burgers model, the truncation 
approximation tends to bring about an excessive transfer of the mean motion 
energy to the disturbances. Lastly, since the Burgers model maps the class A 
initial data into a unique equilibrium state, it  is evident that this equilibrium 
state also represents the stationary statistical dynamics provided the initial 
ensemble is chosen from the class A initial data. This is the most interesting 
property of the Burgers model shared by the Navier-Stokes equations which have 
the universal stationary distributions of the mean flow and root-mean-square of 
the turbulent velocities in a ohannel. 

2. Burgers model equations 
In  order to enhance the analogy between the Burgers model and actual 

turbulent channel flow problem, we shall write the basic equations of Burgers in 
the dimensionless form which closely resemble the Navier-Stokes equations for 
a channel flow 

dU/dt  = 1 - U/R-lo1v2dy, (2.1) 

(2.2) awlat = uv + R-1 a2viay2 - avyay. 

Here, we may consider R = u*h/v as a Reynolds number based on the friction 
velocity u* = Pi (P  being the external pressure), the channel width h, and the 
kinematic viscosity v. Let us call (2.1) and (2.2) respectively the mean and dis- 
turbance equations, thereby gaining access to shear flow terminology. Under the 
no-slip wall velocities v(0) = v(1) = 0, the total energy of the flow system obeys 
the following energy balance equation obtained from (2.1) and (2.2) in the usual 

The physical interpretation of (2.3) is that the temporal variation of the total 
energy is due to the balance between the energy input by the external pressure 
force and the energy loss by viscous dissipation. 

2.1. Burgers solution for the case of U = R 
The steady mean motion can be found immediately from (2.1) 

U = R[1-/01v2dy] (2.4) 

21-2 
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This has the familiar form of the laminar flow U = R as modified by the Reynolds 
shear stress which provides the effective mean-disturbance interaction. For the 
special case of no Reynolds shear, Burgers (1937) has obtained the stationary 
solution of (2 .2)  with a constant U in the following parametric form 

v = f [U/ZR]* [C-7  +In ( 1  +7)]4, 

Here, the auxiliary variable 7 = - 2(av/ay)/U must lie between the two limits 
rl and q2, which are the distinct roots of C-q+ln (1 +r) = 0. The peculiar 
feature of (2.5) is that the integration constant C cannot be chosen arbitrarily 
and it must take on certain discrete values, similar to an eigenvalue. Since v = 0 
at 7 = rl, we associate the lower limit ql with y = 0. We then observe that v is 
again zero at 7 = qz. Hence, by judicious selection of C it is possible to introduce 
an arbitrary number of nodes for v in (0,l) .  Namely, we can fhd for T(,) a constant 
C, such that (2.5) gives y = 1, for T,) another constant C, such that (2.5) gives 
y = i, and so forth. Thus, the condition that v has m nodes becomes 

provided C, can be found. Burgers has pointed out that the sequence of C, is 
decreasing because the definite integral decreases with C and further that the 
definite integral has its minimum 7724 as C,+O. Since we have l / ( m  + 1 )  = n-/R 
as C, -+ 0, the maximum number of nodes for a fixed R is restricted to the largest 
integer contained in [R/n- - 11. Otherwise, the choice of m is completely arbitrary 
as long as it does not exceed the maximum limit. This, however, should not be 
interpreted as the emergence of new nodes as R passes through multiples of n-. 
The obvious reason is that m is an external parameter and hence, for instance, 
T(,) can exist for all R > n- without making a transition to T(0. 

2.2. The in$nite system of amplitude equations 

For the general case of U + R, we may expand the velocity field in a complete 
set of the basis functions satisfying the boundary conditions 

m 

Introducing (2.6) into (2.1) and (2 .2 ) ,  the mean and disturbance equations 
become 1 "  

2 n=l 
dUldt = l - U / R - -  C &:, 

Considering U as the zeroth harmonic, we see that (2.7) and (2.8) represent an 
infinite set of amplitude equations. The non-linear dynamics are expressed by 
the convolution sums in the right-hand side of (2.8). Physically speaking, the 
first sum i2&&+k represents the absorption of energy from the modes of order 
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lower than tn, whereas the second sum - l&jkn+k is responsible for the trans- 
mission of energy to all the modes of order higher than tn. Naturally, the first 
convolution sum is absent in the El equation. 

An interesting observation can be made from the total energy balance equation 
(2.3) which now has the form 

If there is an equilibrium state, then since the left-hand side of (2.9) is expected 
to vanish identically, the equilibrium trajectories of U and cn are constrained 
by the ellipsoid 

In fact, the ellipsoid is an invariant set. In  order to describe the full transient 
dynamics, we must treat the set of (2.7) and (2.8) for the Burgers model problem. 
However, when the investigation of equilibrium states is at  issue, it  is indeed 
expedient to examine a degenerate system of (2.8) and (2.4), the latter of which 
now has the following representation : 

(2.10) 

The set of (2.8) and (2.10) will be called hereafter the quasi-steady system. The 
advantage of the quasi-steady formulation will later be discussed in $3.2 by 
comparing the phase-space behaviour of the quasi-steady system with that of 
the original system. 

2.3. Stability analysis 

In  the quasi-steady formulation, it is natural to visualize the disturbances tn to 
represent a certain perturbation superimposed on the otherwise laminar mean 
motion U = R. Physically speaking, we expect that a disturbance of any kind 
will damp out in the small R range, thereby recovering the laminar motion 
regardless of the initial excitation. On the other hand, it is plausible to anticipate 
that as R > R, a certain class of the initial disturbances may develop into an 
equilibrium state which can be identified as the turbulent flow. To put this 
physical concept in a firm mathematical framework, we rewrite (2.8) in the 
vector form dx/dt = DX + F ( x )  G(x), (2.11) 

where x is a column vector with the components tn, D is a diagonal matrix with 
the components Dnn = U - (nn)2/R, and F ( x )  is a column vector with the non- 
linear components 1 n-1 

(-nn[ij k=l  x htn- -k-  k = l  5 &c'!n+k]). 

It is important to observe that the energy conservation by the non-linear terms 
gives rise to the orthogonality between x and F ( x ) ,  i.e. 

X T F ( X )  = 0, (2.12) 

where XT is the transpose of X .  We further note that F ( x )  satisfies the usual 
non-linearity condition (Bellman 1953) IIF(x)ll/llxll -to as llxl[ -t 0, where I[ / /  is a 
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metric norm. Therefore, it is obvious that x = 0 is the null solution of (2.11). 
According to the fundamental stability theorem (Bellman 1953), x = 0 is a stable 
solution of (2.1 1) if D is a stable matrix, i.e. all the eigenvalues of D have negative 
real parts. In  fact, D is stable in the laminar range R < T, and hence x = 0 
represents the laminar solution. 

In  the turbulent range R > TT, some of the eigenvalues of D become positive. 
Hence, the fundamental stability theorem based on the linear behaviour of (2.11) 
can no longer be applied. Although some components of x will then be amplified 
according to linearized stability theory, it is quite conceivable to expect that 
their growth may eventually be modulated by the non-linear terms so as to attain 
a stable equilibrium state different from x = 0. In  order to encompass non- 
linearity in the stability investigation of (2.11), we introduce a Lyapunov 
function (Hahn 1963) 

which is clearly positive definite, since it represents the disturbance energy. The 
stability criteria of Lyapunov theory are based on definiteness of the total time 
derivative of V which can be computed through (2.11) (in view of (2.12)) 

d V / d t  F' = x ~ D x .  (2.13) 

In  the laminar range, we note that < 0 because D is a stable matrix. Hence, 
x = 0 is asymptotically stable. Zubov (1964) has suggested a method for finding 
the region of asymptotic stability of the null solution from a Lyapunov function 
V, which is the solution of the following partial differential equation 

v =  iXFX, 

[dv(x)/dtl+, = $(XI [I + GTGlt (1 + V,(X)). (2.14) 

With the choice of a positive definite function $(x) = - xTDx/[l + GTG]4, the 
Lyapunov function which satisfies (2.14) and all the conditions of Zubov (1964, 
theorem 22) is V, = exp ( - &xTx) - 1. Since the region of asymptotic stability is 
bounded by V, = - 1, we see that it is the entire x space and hence the null 
solution is completely stable. 

In  the turbulent range, the equilibrium state x = is the solution of 

Dx+B'(x) = 0.  (2.15) 

In view of the orthogonality (2.12), we can derive from (2.15) a very important 
condition on the equilibrium states 

ETDC = 0. (2.16) 

The immediate consequence of (2.16) is that we can conclude from (2.13) 

F' = 0. (2.17) 

This is a sufficient condition for the equilibrium state E to be stable. Furthermore, 
we can derive from (2.16) certain conditions for (2.15) to have a real equilibrium 
state. Clearly, at least one eigenvalue of D must be positive, otherwise (2.16) 
cannot be satisfied by non-zero e. Some other conditions imposed by (2.16) will 
later be encountered in 0 3.1. 

Alternatively, the local stability of (2.11) about an equilibrium state can be 
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examined by investigating stability of the Jacobian matrix of G with respect 
to x at x = 4. 

n ( g 2  + E4) -1 

-1 - - - 1 
where 0 is given by (2.10) in which tn are replaced by En. Whether or not J(G,  x) 
is stable will be determined by the Hurwitz conditions. 

3. The truncated set of the quasi-steady system 

(2.8) and (2.10) 
To simplify the coefficients of the amplitude equations, let us introduce into 

U = R 8 ,  R = nfi, t = .?In, (3.1) 

and remove the A 's in the resulting equations 

The new R is now measured in units of n. Since we are measuring U in units of R, 
the new U is normalized. The amplitudes of Cn are not at all affected by (3.1), 
however. Clearly, T(,) is governed by the set of (3.2) in its entirety. On the other 
hand, T(A for m > 1 is the solution of the reduced set of (3.2) in which are retained 
only the 5's whose harmonic indices are multiples of (m + 1). Therefore, we see 
at once that the T,) system is identical to any one of the T(m) systems if all the 
harmonic indices of the T(,) system are multiplied by the factor (m + 1). Since the 
Trn) systems (for all admissible m) form a class of equivalent dynamic problems, 
it suffices to investigate only the T(,) system as the investigation of any other 
T(m) system would certainly be redundant. This is expected because we have con- 
structed the T(m) by arranging (m+ 1) of T(,) in such a way that continuity is 
preserved a t  the nodes. 

Although the T(,) system is formally equivalent to the original equations (2.2) 
and (2.4), the expansion technique has produced an infinite set of amplitude 
equations which is theoretically intractable. Hence, we shall truncate it by 
discarding all the disturbance modes of order higher than those we wish to retain. 
Of course, convergence is the basic premise for the truncation approximation 
which assures that the accuracy of approximation can be improved by including 
arbitrary large number of modes. The main objective of this section is to demon- 
strate the equilibrium state dynamics of the truncated Burgers models, and 
hence we shall investigate in detail the first three truncated sets by considering 
them as models for a certain dynamic process. Prior to the detailed discussion, 
we must point out that the truncated Burgers model has certain degenerate 
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turbulent solutions. Let us denote the truncated set of (3.2) by T:@, wherepis 
the number of modes retained. Suppose that we excite initially only the mode, 
say, k whose second multiple 2k exceeds the upper limit mode p .  Then, the trun- 
cated Burgers model cannot display the desired non-linear dynamics of dis- 
persing the initial single mode energy to its neighbouring Fourier modes. In  
particular, under the initial condition 

(3.3) I &(O) = c (2k > p ,  c being an arbitrary constant), 

& ( O )  = 0 (j  =k k , j  G P), 

the equilibrium turbulent solution of TI:) for R > k is seen to be 

!7 = (k/R)', El = 2(1-(k/R)'), Ej = 0 (j $- k). (3.4) 

We shall hereafter call (3.4) the degenerate turbulent solution, for it represents 
the frozen state of motion at  a single Fourier mode. Since (3.3) has zero measure 
in the initial data space, we shall in general consider (3.4) to represent a trivial 
state unless it can be attained from some other initial conditions. 

3.1. Several truncated sets of T,, system 

The lowest-order truncated set of (3.2) is T$] which Case & Chiu have discounted 
as a trivial case. 

The T[i; truncated set. We have for p = 1 

For R < R, = 1, the equilibrium solution is L. In  the turbulent range R > R,, 
since (2.16) requires that !7- 1/R2 = 0, the real equilibrium state is 

!7 = 1/R2, 

El = 2 [2(l - 1/R2)]s. 
- 

The sign of 5, is determined by its initial sign. Although (3.6) coincides with (3.4) 
for k = 1, it is not a trivial equilibrium state because we have verified that (3.6) 
is attainable from the arbitrary initial data. In  view of the asymptotic behaviour 

24 as R -+ 00, the truncated set (3.5) represents a physical process 
of transferring the mean motion energy to the disturbance. As we shall see later, 
an excessive mean-to-disturbance energy transfer is the common feature shared 
by all truncated Burgers models. 

The T$] truncated set. The next truncated set is the lowest-order case that 
Case & Chiu (1969) have examined 

-+ 0 and g, --f 

(3.7) 

u = l -$(g+g;) ,  
d61/dt= R(U-1/R2)61+E1627 

dtzldt = R( U - 4/R2) c 2  - t:. 
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Again, L is the equilibrium solution for R < R, = 1. In  the range R, < R < (17/2)!t 
only the first eigenvalue of (2.16) is positive and hence the real equilibrium state 
of (3.7) becomes 

V = (2/5) [1+ 3/2R2], 1 

- c2 = - (2R/5) [l- 1/R2]. 

As in (3.6) the sign of El is dictated by its initial sign. For R > (17/2)6, however, 
(2.16) cannot be satisfied by two positive eigenvalues, hence we have for the real 
equilibrium state 

.V = 4/R2, 
- 
‘51 = 0, 
- c2 = - [2( 1 - 4/R2)]*. 

(3.9) 

It must be pointed out that (3.8) and (3.9) have the commonvalue a t  R = (17/2)* 
and they represent a unique equilibrium state defined continuously for all R. 
Here, again, (3.9) which coincides with (3.4) for Ic = 2 is not trivial because it can 
be attained from the arbitrary initial data. Since (3.9) also represents the equi- 
librium solution of T{ii, Case & Chiu have called R = (17/2)* the second R, for 
the T-T transition of !Z’(o)+T(l). Such an assertion, however, does not fit in the 
general convergence structure of the truncation approximation. 

The Ti$! truncated set. In  contrast to the previous two truncated sets which had 
only one equilibrium state (except for the signs for El), the present T{!{ has 
several equilibrium states corresponding to the algebraic solutions of (2.15). As 
it turns out, all the equilibrium states are stable as they satisfy (2.17), hence we 
cannot choose apriori a correct equilibrium state into which Ti${ willmap acertain 
set of realizable initial data. The ambiguity will therefore be resolved by investi- 
gating attainability of each equilibrium state from the class A initial data. The 
closed equations for T{$i are 

(3.10) 

Again, L is the laminar equilibrium solution. For R > R, the fist eigenvalue of 
(2.16) is positive, hence a real equilibrium state of (3.10) becomes 

, 
(3.11) 1 

- R( V - 4/Rz) (V - 9/R2) z2 
(G - 9/R2) - 6E2 5; = 

- c2 = (R/6)[-(V-9/R2)-{(D-9/R2)2-12(V-9/R2)(V- 1/R2))*], 

& = 3ElE2/R( 0 - 9/R2). 
- 

We have chosen the minus sign for the discriminant of E2 in accordance with the 
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actual equilibrium solution. To complete the solution of (3.11) we obtain from 
the first of (3.10) a relation between 0 and R 

Although (3.11) and (3.12) are the same equations as used in Case & Chiu (1969) 
our present analysis of them gives an entirely different stability result. 

whose real roots are graphed in 
figure 1. Since u = 1 at R = 1, the root locus A-B is the correct choice for small R 
and, by continuity, the relevant root locus is B-C for large R. For this u we find 
that (3.11) has a real equilibrium state which is depicted by the continuous curves 
A-B-C in the respective figures 2-4. Let us denote this equilibrium state A-B-C 
by EA-B-c. It has been verified that gA-B-O is attainable from the class A initial 
data. Furthermore, EA--B-c also reflects the excessive mean-to-disturbance energy 
transfer for large R. Suppose that, at the point B of figure 1, we had chosen the 
root locus B-D, then both El and E3 would approach the vertical asymptote at 
R 2: 2.43. On the other hand, had we followed the root locus B-E, the solution 
of (3.11) becomes non-real for R 5 1.38. In  fact, the root locus B-E is not accept- 
able for the obvious reason that the laminar and turbulent solutions cannot be 
matched up continuously at R = 1. Although EE-B-D satisfies (2.17) and the 
Jacobian matrix for it is stable, we have not been able to approach this equi- 
librium state from any initial data (other than EE-B-D itself). 

We note that (3.12) is a cubic equation in 

In  a large R range, there is another equilibrium state 

(3.13) 

As in the case of (3.9), (3.13) is not trivial because it is attainable from some 
initial data of class B other than (3.3). Case & Chiu have suggested the R range 
of (3.13) to be R 2 (5.2)4, and we have confirmed this to be a correct estimate. 
Since (3.13) also represents the equilibrium solution of Ti$ they have called 
R N (5.2)) the second R, for the T-T transition of T(o)+T(,). They have further 
suggested this to be a finite-jump transition because there is no way that (3.13) 
can be matched continuously with either ZB-c or gB--D at R N (5.2)*. Theoretically 
in an even larger R range, (3.10) has another equilibrium state corresponding to 
(3.4) for k = 3. We have, however, not shown this to be a non-trivial state. 

3.2. Phase-space behaviours 
Thus far, our equilibrium state investigation has been based on the quasi-steady 
(Q-S) system (2.8) and (2.10) instead of the original system (2.7) and (2.8). The 
motivation for this was the belief that, if the original system ever attains an 
equilibrium state, it is the same state that Q-S system will attain because the 
existence of steady mean motion has been presupposed in the Q-S formulation. 
Although the Q-S system badly misrepresents the actual transient dynamics, it  
enjoys a tremendous computational advantage over the original system inasmuch 
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as the search for equilibrium states is concerned. Figure 5 compares certain pro- 
jections of the phase-space trajectory of the original system with the corre- 
sponding trajectory of the Q-S system under R = 4. In  the first group of 
figures 5 (a)-(c), the trajectories of g s  with respect to U are shown for the original 
system of T$] under the initial data &(O)  = 0.5, c2(0) = 0, &(O) = 0.1, U ( 0 )  = 1.0. 
We see that the trajectories go through three distinct stages: the exhaustive 
transfer of the mean motion energy to the disturbances, the back-flow of the 
accumulated disturbance energy to the mean motion, and the eventual energy 
equilibration toward a stationary state. The second group of figures 5 (d)-(f) 
show the trajectories of ['s with respect to U for the Q-S system of T{$ under the 

1.0 -- 

63 

-0.6 -0.6 -. 
( L') 

-0.6 

12 

FIGURE 5. The phase-space trajectories ( R  = 4.0). (a)-(c) The original system 
of Tli!; (d)-(f) the quasi-steady system of T::;. 

same initial data for 6 as in the first group of the figures. As anticipated, the Q-S 
system attains the same equilibrium state as the original system. Yet, the 
approach to equilibrium state in the phase-space representation is much more 
straightforward for the Q-S system than for the original system. However, 
figure 5 fails to indicate the actual evolution time required for equilibration. 
Indeed, the total equilibration time for the Q-S system is an order of magnitude 
shorter than that for the original system. All of these points are in favour of the 
Q-S system as an efficient means for the equilibrium state investigation. 

4. The overall equilibrium state investigation 
For the first three truncated sets of § 3.1, it was possible to enumerate all the 

equilibrium states of T{&) for p = 1, 2,  3 as the algebraic solutions of (2.15). The 
unique equilibrium state was then chosen based on the criteria that it is con- 
tinuous in R and attainable from the class A initial data. Because of the analytical 
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difficulty in solving (2.15) for a high-order truncation, it is not in general feasible 
to find algebraically the equilibrium states of T#j forp 2 4. Therefore, byrevert- 
ing the previous procedure of picking out a unique equilibrium state among all 
possible ones, we shall resort to the direct search for a particular equilibrium 
state from the stationary solutions which are attainable from certain initial data. 
Of all the stationary solutions, we shall choose one for the equilibrium state that 

1.5 

n 

0.3 

FIGURE 6. Equilibrium states of the truncated Burgers sets ( R  = 4.0). 

satisfies the convergence requirement with respect to the truncation approxima- 
tion. It has been found that the truncated sets T#j for p k 4 have a unique 
equilibrium state which corresponds t.0 the stationary solution attainable from 
the class A initial data. Since the search for equilibrium states has been carried 
out for discrete values of R, the continuity of equilibrium state with respect to R 
can only be asserted pointwise. In  the way that the initial data space has been 
bisected, the equilibrium states attainable from the class B do not have the 
proper convergence property with respect to the truncation approximation. The 
entirety of such equilibrium states will not be discussed here, however. 

We have summarized in figure 6 a typical sequence of the equilibrium states 
for the first 21 truncated sets which are all attainable from the class A initial data. 
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For a fixed R, we have chosen the mean motion g and the disturbance V (equa- 
tion (2.6)) as the equilibrium state variables. The g and V of the first three 
truncated sets have already been presented in $3.1.  Let us make a few important 
observations from the figure. First of all, for a modest value of R = 4, it requires 
aboutp = 21 modes to suppress the truncation error to be \ & / & I  < 0.3 % (i 2 21). 
Clearly, as R increases it is necessary to include a larger number of modes in TI:! 
to maintain the same level of truncation error. Secondly, the lower-order trun- 
cated sets ( p  < 6) give poor approximations to the original (untruncated) Burgers 
problem. Hence, their equilibrium dynamics should be interpreted only qualita- 
tively. In  particular, the T)$ has a typical solution of T(d. However, it is not 
consistent to associate such an irregularity with the T-T transition of T(o,+ T,,,. 

FIGURE 7. Development of the disturbance modes ( R  = 4-0). 

Apart from the phase-space behaviours already discussed in $ 3.2, the quasi- 
steady formulation has an interesting physical motivation. Let a channel flow be 
sustained laminarly at an R > R,. Suppose that we introduce into it a small but 
arbitrary perturbation of at the initial time. Then, two things will happen 
immediately. One is the growth of f l l  due to the influx of the mean motion energy 
by the mean-disturbance interaction, and the other is the excitation of the higher 
modes &, &, . . . due to the cascade energy flow by the non-linear interaction. As 
a whole, the flow of the mean motion energy to the disturbances is not an open- 
end process. This is because the Reynolds shear which modifies the laminar U 
has the effect of delimiting the level of mean energy drain by the mean-disturb- 
ance interaction. With the increase of c1 amplitude, there will be more and more 
of the disturbance modes being excited by the non-linear interaction. Since the 
viscous dissipation takes place progressively with the higher modes, we can in 
actuality suppose the existence of a cut-off harmonic mode for a given R. Thereby, 
stationary turbulent channel flow can be established for a T[#!. Figure 7 displays 
the development of a stationary channel flow in terms of the U and individual 
modes En which have been evolved from only the non-zero primary mode 
&(O) = 0.2 and &(O) = 0 for i > 2. On the other hand, the development of the 
disturbance w under the same condition is shown in figure 8. 
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Before closing, we mention that both the digital and analog computers have 
been used in this work, capitalizing the best features of the two. Needless to say, 
an analog computer is most efficient in the search for equilibrium states, 
whereas the digital computer provides quantitative results. The numerical inte- 
gration scheme used here was the one which was found practical, though not 
necessarily the most, accurate, for the actual channel flow computation. 

I .o 
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0 I .o 
Y 

FIGURE 8. Development of the disturbance profile (R = 4.0). 

Returning to (2.11), we can obtain the following expression for x(t  + At)  (At being 
a time step) 

x(t + At) = eDAtx(t) + eD(t+At) Itt'"' e-DS F(s)  ds. 

Using the trapezoidal approximation we have 

x( t  + At) = eDAtx(t) + (+At) [F(t + At) + eDAtF(t)]. 

Since D and F(t + At) are not known explicitly, the above formula provides the 
basis for an iterative procedure. The error estimate for our integration scheme is 
seen to be of O(AP). 
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